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 Agricultural Ecosystems 

Agricultural ecosystems 
 Agronomic and horticultural crop production, 

rangelands, aquaculture, and animal agriculture 

 

 Are agricultural practices compatible with sustaining 
economic crop productivity and preserving quality of 
our natural resources? 

 

 Are agricultural practices adequate to meet current 
demands and future needs to sustain economic crop 
productivity and protect the quality of our natural 
resources? 
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Agricultural Ecosystems 
 Current agricultural practices are compatible but may 

not be adequate to sustain economic crop productivity 
and protect quality of our natural resources 

 During the past decade, implementation of best 
management practices (BMPs) have helped to improve 
water quality  

 The future of global agriculture depends on: 
 Meeting the food and fiber needs of a world population 

projected to exceed 10 billion by 2050 

 Maintaining economic productivity of crops 

 Protecting the quality of natural resources for future generations 

 Challenge is to develop new or improve practices that 
are compatible with current needs and future demands 
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Sources of Pollution 
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Primary Types of Pollution 
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Fertilizers and Manures 

 The World 
 Fertilizer consumption - N/P ratio = 5.8 

 Manure production - N/P ratio = 1.9 

 Collectable manure nutrients - N/P ratio = 0.9 
 

 North America 
 Fertilizer consumption - N/P ratio = 6.2  

 Manure production - N/P ratio = 1.7 

 Collectable manure nutrients - N/P ratio = 0.8 
 

 Florida 
 Fertilizer consumption – N/P ratio = 6.8 

 

 

[Mullins et al., 2005] 

[Mullins et al., 2005] 
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Fertilizer Consumption in Florida 
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Lands used for  

Production Agriculture 
 Long-term application of fertilizer P has 

resulted in substantial accumulation of P in 

soils 

 Land application of manures and other organic 

wastes  

– Nitrogen basis…results in excess P load 

– Phosphorus basis… increases land area 

requirements 

 In many areas response to added fertilizer P 

appears to be poor 
10 WBL 



Wetlands & 

Streams 

[sink/source] 

Lake 

Okeechobee 

Lake  

[sink] 

Uplands 

[sink/source] 

Fertilizers, Animal wastes 

Biosolids, Wastewaters 

Nutrient Transfer 

11 WBL 



Nutrient  Budgets 

 Why do we need to know nutrient 

budgets for a cropping system ? 
Accounting of various sources nutrients 

available will aid in proper  management of 

resources 

 improved nutrient use efficiency by crops 

 reduction of  non-harvestable nutrients 

12 WBL 



8 

O 
16 

6 

C 
12 

7 

N 
14 

15 

P 
31                                                  

16 

S 
32                                                  

Macronutrients 

13 WBL 



 Biological N2 fixation 

 Dry and  wet deposition 

 Non-point sources 

 Manures  

 Fertilizers 

 NH3 volatilization 

 Leaching and runoff 

 Gaseous losses (N2O, N2) 

 Plant harvest 

 Plant biomass 

 Microbial biomass 

 Soil organic N 

 Soil porewater 

 Exchangeable N 

 Clay fixed NH4 -N 

Nitrogen Budget 

14 WBL 



Fertilizers (Urea)  

 100 kg 15N/ha 

 NH3 volatilization [37] [0] 

 Leaching and runoff [?] 

 Gaseous losses (N2O, N2) [8] [14] 

 Grain [24] [37] 

 Plant residues [10] [24] 

 Soil organic N [21]  [24] 

Nitrogen Budget -Rice 

[ ] Surface application  

[ ] Incorporated into Soil  
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Northern Everglades:  

Okeechobee Drainage Basin 
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Restoration Implications 

  Legacy P in the drainage basin can increase 

the lag time for recovery… can extend for 

several decades 

  In-situ immobilization of soil phosphorus is 

needed to reduce P loads 

  Constructed wetlands are effective buffers in 

reducing P loads, but they must managed for 

long-term sustainability 

  Phosphorus reactivity and mobility is linked to 

other associated nutrients 
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 Long-term goals of ecosystem 
management should include conservation 
and enhancement of  soil quality 

 Policies to reduce nutrient loads from 
ecosystems should seek to improve soil 
quality as a first step to improve water 
quality 

 Develop indicators to assess soil 
ecosystem services  

Agricultural Ecosystems: 

 Nutrient Management  
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 Develop of soil and nutrient management 
practices that are compatible with extreme 
climatic change events 

 Estimate  economic values of soil ecosystem 
services and tradeoffs associated with 
changes in soil and nutrient management 
practices 

 Protecting soil quality, like protecting air and 
water quality, should be a fundamental goal of 
national environmental policy 

Agricultural Ecosystems: 

 Nutrient Management  
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 http://soils.ifas.ufl.edu 
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 E-mail: krr@ufl.edu   


