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Agricultural Ecosystems

< Agricultural ecosystems

< Agronomic and horticultural crop production,
rangelands, aquaculture, and animal agriculture

< Are agricultural practices compatible with sustaining
economic crop productivity and preserving quality of
our natural resources?

< Are agricultural practices adequate to meet current
demands and future needs to sustain economic crop
productivity and protect the quality of our natural
resources?
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Agricultural Ecosystems

» Current agricultural practices are compatible but may
not be adequate to sustain economic crop productivity
and protect quality of our natural resources

» During the past decade, implementation of best
management practices (BMPs) have helped to improve
water quality

» The future of global agriculture depends on:

» Meeting the food and fiber needs of a world population
projected to exceed 10 billion by 2050

» Maintaining economic productivity of crops
» Protecting the quality of natural resources for future generations

» Challenge is to develop new or improve practices that
are compatible with current needs and future demands
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Sources of Pollution
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Primary Types of Pollution
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Fertilizers and Manures

q The WOrId [Mullins et al., 2005]

o Fertilizer consumption - N/P ratio = 5.8
o Manure production - N/P ratio = 1.9
o Collectable manure nutrients - N/P ratio = 0.9

a North AmericaMullins et al., 2005]
o Fertilizer consumption - N/P ratio = 6.2
o Manure production - N/P ratio = 1.7
a Collectable manure nutrients - N/P ratio = 0.8

o Florida
o Fertilizer consumption — N/P ratio = 6.8
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Fertilizer Consumption in Florida
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Lands used for
Production Agriculture

o Long-term application of fertilizer P has
resulted in substantial accumulation of P in
solls

o Land application of manures and other organic
wastes

— Nitrogen basis...results in excess P load

— Phosphorus basis... increases land area
requirements

o In many areas response to added fertilizer P
appears to be poor
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Fertilizers, Animal wastes
Biosolids, Wastewaters

Nutrient Transfer




Nutrient Budgets

v Why do we need to know nutrient

budgets for a cropping system ?
v Accounting of various sources nutrients
available will aid in proper management of
resources
v improved nutrient use efficiency by crops
v reduction of non-harvestable nutrients
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= Manures

oy seeion - Nitrogen Budget

= Non-point sources
Uz

= Fertilizers 9‘

» Plant biomass

= Microbial biomass
= Soil organic N
= Soil porewater
= Exchangeable N
= Clay fixed NH, -N
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@) = NH, volatilization
(’ » Leaching and runoff
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= Gaseous losses (N,O, N,)

= Plant harvest
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Nitrogen Budget -Rice

[ ] Surface application

Fertilizers (Urea)
100 kg *>N/ha

[ ] Incorporated into Soill

Storages

» Plant residues [10] [24]
= Soil organic N [21] [24]

© » NH; volatilization [37] [O]
0,,,5 » Leaching and runoff [?]
» Gaseous losses (N,O, N,) [8] [14]
» Grain [24] [37]
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Greater Everglades Ecosystem
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Lake

Okeechobee

Southern
Everglades

Basins Legend

Northern Everglades Ecosystem
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Northern Everglades
Okeechobee Drainage Basin
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Legacy
Phosphorus
Okeechobee

Reddy et al., 2011
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Restoration Implications

«+ Legacy P In the drainage basin can increase
the lag time for recovery... can extend for
several decades

» In-situ Immobilization of soil phosphorus is
needed to reduce P loads

« Constructed wetlands are effective buffers in
reducing P loads, but they must managed for
long-term sustainability

< Phosphorus reactivity and mobility is linked to
other associated nutrients
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Agricultural Ecosystems:
Nutrient Management

o Long-term goals of ecosystem
management should include conservation
and enhancement of soll quality

o Policies to reduce nutrient loads from
ecosystems should seek to improve soill
guality as a first step to improve water
guality

o Develop indicators to assess soll
ecosystem services
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Agricultural Ecosystems:
Nutrient Management

o Develop of soil and nutrient management
practices that are compatible with extreme
climatic change events

o Estimate economic values of soil ecosystem

services and tradeoffs associated with
changes in soil and nutrient management

practices

o Protecting soil quality, like protecting air and
water guality, should be a fundamental goal of
national environmental policy
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